Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(9): e30547, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726163

RESUMO

The present article describes the muscle relaxant and antipyretic effects of pentacyclic triterpenes, oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) isolated from roots of Diospyros lotus in animal models. The muscle relaxant effects of isolated pentacyclic triterpenes were determined by chimney and inclined plane tests. In the chimney test, pretreatment of pentacyclic triterpenes evoked significant dose dependent influence on muscle coordination. When administered intraperitoneally (i.p.) to mice at 10 mg/kg for 90 min, OA, UA, and BA exhibited muscle relaxant effects of 66.72 %, 60.21 %, and 50.77 %, respectively. Similarly, OA, UA, and BA (at 10 mg/kg) illustrated 65.74 %, 59.84 % and 51.40 % muscle relaxant effects in the inclined plane test. In the antipyretic test, significant amelioration was caused by pretreatment of all compounds in dose dependent manner. OA, UA, and BA (at 5 mg/kg) showed 39.32 %, 34.32 % and 29.99 % anti-hyperthermic effects, respectively 4 h post-treatment, while at 10 mg/kg, OA, UA, and BA exhibited 71.59 %, 60.99 % and 52.44 % impact, respectively. The muscle relaxant effect of benzodiazepines is well known for enhancement of GABA receptors. There may exist a similar mechanism for muscle relaxant effect of pentacyclic triterpenes. The in-silico predicted binding pattern of all the compounds reflects good affinity of compounds with GABAA receptor and COX-2. These results indicate that the muscle relaxant and antipyretic activities of these molecules can be further improved by structural optimization.

2.
Eur J Pharm Sci ; : 106797, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735401

RESUMO

The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4-chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4-chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.

3.
Arch Pharm (Weinheim) ; : e2400140, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687119

RESUMO

Diabetes is a serious metabolic disorder affecting individuals of all age groups and prevails globally due to the failure of previous treatments. This study aims to address the most prevalent form of type 2 diabetes mellitus (T2DM) by reporting on the design, synthesis, and in vitro as well as in silico evaluation of chromone-based thiosemicarbazones as potential α-glucosidase inhibitors. In vitro experiments showed that the tested compounds were significantly more potent than the standard acarbose, with the lead compound 3n exhibiting an IC50 value of 0.40 ± 0.02 µM, ~2183-fold higher than acarbose having an IC50 of 873.34 ± 1.67 µM. A kinetic mechanism analysis demonstrated that compound 3n exhibited reversible inhibition of α-glucosidase. To gain deeper insights, in silico molecular docking, pharmacokinetics, and molecular dynamics simulations were conducted for the investigation of the interactions, orientation, stability, and conformation of the synthesized compounds within the active pocket of α-glucosidase.

4.
J Biomol Struct Dyn ; : 1-16, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294707

RESUMO

Present research was designed to synthesize and characterize the flurbiprofen derivatives and to evaluate their analgesic, anti-inflammatory and gastro-protective activities in post-operative and chronic inflammatory pain models. Flurbiprofen derivatives were produced by using three-step processes involving esterification, hydrazide production, and schiff base, each of which modified a different carboxyl group. All the newly synthesized flurbiprofen derivatives (NS5-NS8) were characterized by 1H NMR,13C NMR,19F NMR and HR-ESI-MS, and the post-operative, inflammatory pain and ulcerogenic activities were determined in well-established in-vivo animal models. To evaluate post-operative and inflammatory pain, various doses of compounds [1, 3, 10, and 30 mg/kg (bwt)] were used, while their ulcerogenic potential was assessed at doses of 100 and 150 mg/kg (bwt). The incisional damage linked pain was significantly (p < 0.001) reduced by derivatives at different doses in both the acute and repeated tests with decreased response of phologistic agent-induced inflammation. The stomach histology and biochemical features demonstrate that the synthesized derivatives have no potential to cause ulcerogenicity as compared to aspirin and flurbiprofen. Furthermore, docking shows that the hydrazide moiety of these compounds is crucial in interacting within COX-2 binding site. Therefore, the synthesized compounds exhibit strong analgesic and anti-inflammatory effects and a low risk of causing ulcers. These attributes render them potentially valuable therapeutic agents for the treatment of pathological disorders associated with inflammation and pain.Communicated by Ramaswamy H. Sarma.

5.
Plants (Basel) ; 12(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068585

RESUMO

Rice (Oryza sativa L.) is one of the most significant staple foods worldwide. Carbohydrates, proteins, vitamins, and minerals are just a few of the many nutrients found in domesticated rice. Ensuring high and constant rice production is vital to facilitating human food supplies, as over three billion people around the globe rely on rice as their primary source of dietary intake. However, the world's rice production and grain quality have drastically declined in recent years due to the challenges posed by global climate change and abiotic stress-related aspects, especially drought, heat, cold, salt, submergence, and heavy metal toxicity. Rice's reduced photosynthetic efficiency results from insufficient stomatal conductance and natural damage to thylakoids and chloroplasts brought on by abiotic stressor-induced chlorosis and leaf wilting. Abiotic stress in rice farming can also cause complications with redox homeostasis, membrane peroxidation, lower seed germination, a drop in fresh and dry weight, necrosis, and tissue damage. Frequent stomatal movements, leaf rolling, generation of reactive oxygen radicals (RORs), antioxidant enzymes, induction of stress-responsive enzymes and protein-repair mechanisms, production of osmolytes, development of ion transporters, detoxifications, etc., are recorded as potent morphological, biochemical and physiological responses of rice plants under adverse abiotic stress. To develop cultivars that can withstand multiple abiotic challenges, it is necessary to understand the molecular and physiological mechanisms that contribute to the deterioration of rice quality under multiple abiotic stresses. The present review highlights the strategic defense mechanisms rice plants adopt to combat abiotic stressors that substantially affect the fundamental morphological, biochemical, and physiological mechanisms.

6.
Plants (Basel) ; 12(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631156

RESUMO

The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors.

7.
Plants (Basel) ; 11(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297746

RESUMO

Diabetes is a common metabolic disorder marked by unusually high plasma glucose levels, which can lead to serious consequences such as retinopathy, diabetic neuropathy and cardiovascular disease. One of the most efficient ways to reduce postprandial hyperglycemia (PPHG) in diabetes mellitus, especially insulin-independent diabetes mellitus, is to lower the amount of glucose that is absorbed by inhibiting carbohydrate hydrolyzing enzymes in the digestive system, such as α-glucosidase and α-amylase. α-Glucosidase is a crucial enzyme that catalyzes the final stage of carbohydrate digestion. As a result, α-glucosidase inhibitors can slow D-glucose release from complex carbohydrates and delay glucose absorption, resulting in lower postprandial plasma glucose levels and control of PPHG. Many attempts have been made in recent years to uncover efficient α-glucosidase inhibitors from natural sources to build a physiologic functional diet or lead compound for diabetes treatment. Many phytoconstituent α-glucosidase inhibitors have been identified from plants, including alkaloids, flavonoids, anthocyanins, terpenoids, phenolic compounds, glycosides and others. The current review focuses on the most recent updates on different traditional/medicinal plant extracts and isolated compounds' biological activity that can help in the development of potent therapeutic medications with greater efficacy and safety for the treatment of type 2 diabetes or to avoid PPHG. For this purpose, we provide a summary of the latest scientific literature findings on plant extracts as well as plant-derived bioactive compounds as potential α-glucosidase inhibitors with hypoglycemic effects. Moreover, the review elucidates structural insights of the key drug target, α-glucosidase enzymes, and its interaction with different inhibitors.

8.
Plants (Basel) ; 10(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34961246

RESUMO

A stomatal pore is formed by a pair of specialized guard cells and serves as a major gateway for water transpiration and atmospheric CO2 influx for photosynthesis in plants. These pores must be tightly controlled, as inadequate CO2 intake and excessive water loss are devastating for plants. When the plants are exposed to extreme weather conditions such as high CO2 levels, O3, low air humidity, and drought, the turgor pressure of the guard cells exhibits an appropriate response against these stresses, which leads to stomatal closure. This phenomenon involves a complex network of ion channels and their regulation. It is well-established that the turgor pressure of guard cells is regulated by ions transportation across the membrane, such as anions and potassium ions. In this review, the guard cell ion channels are discussed, highlighting the structure and functions of key ion channels; the SLAC1 anion channel and KAT1 potassium channel, and their regulatory components, emphasizing their significance in guard cell response to various stimuli.

9.
Int J Biol Macromol ; 187: 127-142, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34298046

RESUMO

The development of new biocatalytic systems to replace the chemical catalysts, with suitable characteristics in terms of efficiency, stability under high temperature reactions and in the presence of organic solvents, reusability, and eco-friendliness is considered a very important step to move towards the green processes. From this basis, the use of lipase as a catalyst is highly desired for many industrial applications because it offers the reactions in which could be used, stability in harsh conditions, reusability and a greener process. Therefore, the introduction of temperature-resistant and solvent-tolerant lipases have become essential and ideal for industrial applications. Temperature-resistant and solvent-tolerant lipases have been involved in many large-scale applications including biodiesel, detergent, food, pharmaceutical, organic synthesis, biosensing, pulp and paper, textile, animal feed, cosmetics, and leather industry. So, the present review provides a comprehensive overview of the industrial use of lipase. Moreover, special interest in biotechnological and biochemical techniques for enhancing temperature-resistance and solvent-tolerance of lipases to be suitable for the industrial uses.


Assuntos
Biocatálise , Biotecnologia , Enzimas Imobilizadas/química , Lipase/química , Estabilidade Enzimática , Temperatura Alta , Solventes/química
10.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33926963

RESUMO

Stomata in leaves regulate gas exchange between the plant and its atmosphere. Various environmental stimuli elicit abscisic acid (ABA); ABA leads to phosphoactivation of slow anion channel 1 (SLAC1); SLAC1 activity reduces turgor pressure in aperture-defining guard cells; and stomatal closure ensues. We used electrophysiology for functional characterizations of Arabidopsis thaliana SLAC1 (AtSLAC1) and cryoelectron microscopy (cryo-EM) for structural analysis of Brachypodium distachyon SLAC1 (BdSLAC1), at 2.97-Å resolution. We identified 14 phosphorylation sites in AtSLAC1 and showed nearly 330-fold channel-activity enhancement with 4 to 6 of these phosphorylated. Seven SLAC1-conserved arginines are poised in BdSLAC1 for regulatory interaction with the N-terminal extension. This BdSLAC1 structure has its pores closed, in a basal state, spring loaded by phenylalanyl residues in high-energy conformations. SLAC1 phosphorylation fine-tunes an equilibrium between basal and activated SLAC1 trimers, thereby controlling the degree of stomatal opening.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Membrana/genética , Folhas de Planta/genética , Estômatos de Plantas/genética , Ácido Abscísico/metabolismo , Ânions/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/ultraestrutura , Brachypodium/genética , Brachypodium/ultraestrutura , Dióxido de Carbono/metabolismo , Microscopia Crioeletrônica , Transporte de Íons/genética , Proteínas de Membrana/ultraestrutura , Fosforilação/genética , Folhas de Planta/ultraestrutura , Estômatos de Plantas/ultraestrutura , Conformação Proteica , Transdução de Sinais/genética
11.
Bioorg Chem ; 65: 61-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26874344

RESUMO

Inhibition of α-glucosidase enzyme activity is a reliable approach towards controlling post-prandial hyperglycemia associated risk factors. During the current study, a series of dihydropyrano[2,3-c] pyrazoles (1-35) were synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 1, 4, 22, 30, and 33 were found to be the potent inhibitors of the yeast α-glucosidase enzyme. Mechanistic studies on most potent compounds reveled that 1, 4, and 30 were non-competitive inhibitors (Ki=9.75±0.07, 46±0.0001, and 69.16±0.01µM, respectively), compound 22 is a competitive inhibitor (Ki=190±0.016µM), while 33 was an uncompetitive inhibitor (Ki=45±0.0014µM) of the enzyme. Finally, the cytotoxicity of potent compounds (i.e. compounds 1, 4, 22, 30, and 33) was also evaluated against mouse fibroblast 3T3 cell line assay, and no toxicity was observed. This study identifies non-cytotoxic novel inhibitors of α-glucosidase enzyme for further investigation as anti-diabetic agents.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Piranos/farmacologia , Pirazóis/farmacologia , Saccharomyces cerevisiae/enzimologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Humanos , Estrutura Molecular , Piranos/síntese química , Piranos/química , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
12.
Eur J Med Chem ; 95: 199-209, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25817770

RESUMO

1,4-Dihydropyridine-3,5-dicarboxylate derivatives (1-25) were synthesized in high yields via Hantzsch reaction and evaluated for their α-glucosidase inhibitory activity. Compounds 1, 2, 6-8, 11, 13-15, and 23-25 showed a potent inhibitory activity against yeast α-glucosidase with IC50 values in the range of 35.0-273.7 µM, when compared with the standard drug acarbose (IC50 = 937 ± 1.60 µM). Their structures were characterized by different spectroscopic techniques. The kinetics, selectivity, and toxicity studies on these compounds were also carried out. The kinetic studies on most active compounds 14 and 25 determined their modes of inhibition and dissociation constants Ki. Compound 14 was found to be a non-competitive inhibitor with Ki = 25.0 ± 0.06, while compound 25 was identified as a competitive inhibitor with Ki = 66.0 ± 0.07 µM.


Assuntos
Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/farmacologia , Piridinas/síntese química , Piridinas/farmacologia , Saccharomyces cerevisiae/enzimologia , alfa-Glucosidases/química , Animais , Anidrase Carbônica II/antagonistas & inibidores , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/citologia , Cinética , Estrutura Molecular , Fosfodiesterase I/antagonistas & inibidores , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/farmacologia , Ratos , Relação Estrutura-Atividade
13.
Bioorg Med Chem ; 22(19): 5454-65, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25151088

RESUMO

Oxadiazoles and thiadiazoles 1-37 were synthesized and evaluated for the first time for their α-glucosidase inhibitory activities. As a result, fifteen of them 1, 4, 5, 7, 8, 13, 17, 23, 25, 30, 32, 33, 35, 36 and 37 were identified as potent inhibitors of the enzyme. Kinetic studies of the most active compounds (oxadiazoles 1, 23 and 25, and thiadiazoles 35 and 37) were carried out to determine their mode of inhibition and dissociation constants Ki. The most potent compound of the oxadiazole series (compound 23) was found to be a non-competitive inhibitor (Ki=4.36±0.017 µM), while most potent thiadiazole 35 was identified as a competitive inhibitor (Ki=6.0±0.059 µM). The selectivity and toxicity of these compounds were also studied by evaluating their potential against other enzymes, such as carbonic anhydrase-II and phosphodiesterase-I. Cytotoxicity was evaluated against rat fibroblast 3T3 cell line. Interestingly, these compounds were found to be inactive against other enzymes, exhibiting their selectivity towards α-glucosidase. Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. α-Glucosidase inhibitors can also be used as anti-obesity and anti-viral drugs. Our study identifies two novel series of potent α-glucosidase inhibitors for further investigation.


Assuntos
Inibidores de Glicosídeo Hidrolases/farmacologia , Oxidiazóis/farmacologia , Tiadiazóis/farmacologia , alfa-Glucosidases/metabolismo , Células 3T3 , Animais , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química , Camundongos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Fosfodiesterase I/antagonistas & inibidores , Fosfodiesterase I/metabolismo , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Relação Estrutura-Atividade , Tiadiazóis/síntese química , Tiadiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA